Study of the active site residues of a glycoside hydrolase family 8 xylanase.

نویسندگان

  • T Collins
  • D De Vos
  • A Hoyoux
  • S N Savvides
  • C Gerday
  • J Van Beeumen
  • G Feller
چکیده

Site-directed mutagenesis and a comparative characterisation of the kinetic parameters, pH dependency of activity and thermal stability of mutant and wild-type enzymes have been used in association with crystallographic analysis to delineate the functions of several active site residues in a novel glycoside hydrolase family 8 xylanase. Each of the residues investigated plays an essential role in this enzyme: E78 as the general acid, D281 as the general base and in orientating the nucleophilic water molecule, Y203 in maintaining the position of the nucleophilic water molecule and in structural integrity and D144 in sugar ring distortion and transition state stabilization. Interestingly, although crystal structure analyses and the pH-activity profiles clearly identify the functions of E78 and D281, substitution of these residues with their amide derivatives results in only a 250-fold and 700-fold reduction in their apparent k(cat) values, respectively. This, in addition to the observation that the proposed general base is not conserved in all glycoside hydrolase family 8 enzymes, indicates that the mechanistic architecture in this family of inverting enzymes is more complex than is conventionally believed and points to a diversity in the identity of the mechanistically important residues as well as in the arrangement of the intricate microenvironment of the active site among members of this family.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases.

The xylanase inhibitor protein I (XIP-I) from wheat Triticum aestivum is the prototype of a novel class of cereal protein inhibitors that inhibit fungal xylanases belonging to glycoside hydrolase families 10 (GH10) and 11 (GH11). The crystal structures of XIP-I in complex with Aspergillus nidulans (GH10) and Penicillium funiculosum (GH11) xylanases have been solved at 1.7 and 2.5 A resolution, ...

متن کامل

Functional importance of Asp37 from a family 11 xylanase in the binding to two proteinaceous xylanase inhibitors from wheat.

Aspergillus niger xylanase is a target enzyme of the two wheat proteinaceous inhibitors, XIP-I and TAXI-I. We previously suggested that the xylanase "thumb" region was XIP-I binding site. Here, we expressed the Asp37Ala mutant in Pichia pastoris and showed that the mutation abolished the enzyme capacity to interact with both inhibitors, suggesting a direct contact at the active site. The mutant...

متن کامل

Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A.

Endoxylanases are a group of enzymes that hydrolyze the beta-1, 4-linked xylose backbone of xylans. They are predominantly found in two discrete sequence families known as glycoside hydrolase families 10 and 11. The Streptomyces lividans xylanase Xyl10A is a family 10 enzyme, the native structure of which has previously been determined by x-ray crystallography at a 2.6 A resolution (Derewenda, ...

متن کامل

The role of conserved arginine residue in loop 4 of glycoside hydrolase family 10 xylanases.

An arginine residue in loop 4 connecting beta strand 4 and alpha-helix 4 is conserved in glycoside hydrolase family 10 (GH10) xylanases. The arginine residues, Arg(204) in xylanase A from Bacillus halodurans C-125 (XynA) and Arg(196) in xylanase B from Clostridium stercorarium F9 (XynB), were replaced by glutamic acid, lysine, or glutamine residues (XynA R204E, K and Q, and XynB R196E, K and Q)...

متن کامل

In Silico Study of Bacillus brevis Xylanase - Structure Prediction and Comparative Analysis with Other Bacterial and Fungal Xylanase

The most important building block of hemicelluloses is xylan. It is broken down into xylose oligomer residues by Xylanase an enzyme, produced by most organisms, to utilize xylose as primary source of carbon. The Xylanase produced are classified into families, viz 5, 8, 10, 11 and 43 of Glycoside Hydrolases (GH). Xylanase from family GH 11 are monospecific, they consist solely of Xylanase activi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 354 2  شماره 

صفحات  -

تاریخ انتشار 2005